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The optimal functioning of the intestinal immune 
response requires discrimination between the indig‑

enous, symbiotic gut microbiota and potential microbial 
pathogens. Understanding of the antimicrobial responses in 
the Drosophila gut has been advanced by the development 
of oral infection models,[1‑8] studies of gut structure,[3,9‑20] 
characterization of commensal microbiota,[6,21‑26] and use 
of axenic flies.[27‑30] These studies reveal that the basal im‑
mune response is weakly induced by the commensal gut 
microbes and strongly enhanced upon pathogen immune 
challenge.[23] Regulatory mechanisms which dampen the 
basal immune response are essential to avoid chronic lethal 
reactions,[31] but the system must remain responsive to acute 
infectious challenges.[29,32] Ingestion of pathogenic bacteria 
causes physiopathological alterations in epithelial barriers, 
both from bacterial toxins and by damage resulting from 
the host’s own immune response.[3,5,31,33‑36] Subsequent 
repair mechanisms promote the regeneration of stem cells 
to re‑establish gut integrity and a homeostatic balance at 
the intestinal barrier. These repair mechanisms involve 
several host signaling pathways.[29,32,37‑40] In addition, re‑

generation of intestinal cells is also modulated indirectly 
by the commensal microbiota, which complements the 
host physiology in several ways.[29,34,41,42] Notably, the 
commensal microbiota seem to be involved in the regula‑
tion of larval growth and have been linked to age‑related 
diseases, associated with gut dysplasia and loss of intestinal 
integrity.[43‑47] Finally, as in mammals, commensal microbes 
seem to contribute to protective reactions against pathogen 
challenge.[8,48] Study of gastrointestinal infections by the 
yeast Candida albicans in Drosophila larvae indicate that 
the commensal microbes enhance host survival during in‑
fection, both in wild‑type and immunodeficient flies. Thus, 
the microbiota may affect pathogens either through direct 
competition or by altering the gut environment.[8,17] In this 
review, we provide the latest updates on the anatomy of the 
Drosophila gut and the regulation of the induced immune 
response in the intestinal mucosa. The repair mechanisms 
of the injured intestine are beyond the scope of this article, 
but recent reviews covering this topic are presented. The 
role of the commensal microbiota in fly physiology is 
covered by Ma et al. in this issue.

Special Edition

In the wild, the fruit fly Drosophila melanogaster thrives on rotten 
fruit. The digestive tract maintains a powerful gut immune barrier 
to regulate the ingested microbiota, including entomopathogenic 
bacteria. This gut immune barrier includes a chitinous peritrophic 
matrix that isolates the gut contents from the epithelial cells. In 
addition, the epithelial cells are tightly sealed by septate junctions 
and can mount an inducible immune response. This local response 
can be activated by invasive bacteria, or triggered by commensal 
bacteria in the gut lumen. As with chronic inflammation in 
mammals, constitutive activation of the gut innate immune response 
is detrimental to the health of flies. Accordingly, the Drosophila 
gut innate immune response is tightly regulated to maintain the 
endogenous microbiota, while preventing infections by pathogenic microorganisms. 
(Biomed J 2015;38:276‑284)
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Hold it tight: The Drosophila gut anatomy

The gut is subdivided into foregut, midgut, and hindgut 
regions [Figure 1], each consisting of a monolayered epithe‑
lium surrounded by visceral muscles, nerves, and tracheae, 
with the nervous system playing a key role in the regulation 
of nutrient intake, and fluid and ion balance.[49] Ingested food 
passes the pharynx and is either stored to the crop or sent 
directly to the midgut where the digestion starts.[50] The crop 
itself is a specialized region of the foregut where a variety of 
immune proteins are secreted, including thioester containing 
proteins (TEPs).[51] The nature and arrangement of the gut 
epithelial cells differs depending on their position along the 
anteroposterior axis and their developmental origin.

The foregut and hindgut epithelia are of ectodermal 
origin, are lined on the apical side by an impermeable 
cuticle, and have pleated septate junctions which seal their 
paracellular spaces. In contrast, the midgut epithelium is 
of endodermal origin, is not covered by cuticle, and its 
integrity relies on smooth septate junctions. The midgut is 
protected by the peritrophic matrix (PM), a semi‑permeable 
membrane allowing the passage of monomeric enzymes and 
nutrients, but not bacteria: It is here that food absorption oc‑
curs. The midgut can be subdivided into an anterior midgut 
region, the acidified copper cell region, and the posterior 
midgut, with the copper cell region perhaps functioning as 
a stomach [Figure 1]. Recently, the adult midgut was further 
subdivided into six anatomical regions (R0–R5) separated 
by narrow epithelial boundaries and with distinct metabolic 
and digestive functions.[40] In the ileum and rectum of the 
hindgut, water and salt re‑absorption takes place from the 
food bolus. The gut harbors a simple bacterial community, 
of four or five major phylotypes, from Lactobacillus and 
Acetobacter genera.[22]

In larvae, processing of complex substrates starts before 
ingestion itself, with clusters of larvae regurgitating digestive 
enzymes and possibly antimicrobial peptides (AMPs).[52] 
Four gastric cecae in the anterior midgut represent a specific 

larval feature, and are major sites of digestion and absorp‑
tion in other insects.[53]

The functioning of the digestive tract, with its 
resident commensal bacteria, is directly threatened by 
exogenous microbial pathogens. Consequently, gut epi‑
thelia are heavily shielded to resist microbial aggression 
by means of specialized junctions that seal the single 
cell layer, a thin cuticle that covers the foregut and 
the hindgut, and the PM which isolates the bolus from 
the midgut epithelial cells.[17] As revealed by electron 
microscopy, four different layers of chitin fibrils and 
glycoproteins (e.g. peritrophins)[54,55] are secreted at the 
beginning of the anterior midgut by the proventriculus[56] 
and self‑assemble to form the PM.[56] Peritrophin genes 
are also expressed in more distal parts of the midgut, 
suggesting that this barrier is remodeled along the length 
of the gut.[40]

Studies using corrosive agents reveal a role for the PM 
in the defense against enteric bacteria both in Aedes and 
Drosophila.[57,58] The chitin‑binding protein drosocrystal‑
lin is strongly expressed upon oral infection, and droso‑
crystallin mutants show reduced PM width and a shorter 
lifespan. These mutants show increased susceptibility 
to oral infections by Serratia marsescens and Pseudo‑
monas entomophila, or to ingestion of the Pseudomonas 
pore‑forming toxin monalysin. These results demonstrate 
that the PM plays an important role in the host defense 
by protecting the gut cells from intestinal pathogens 
and/or their toxins.[59,60] Additional studies also suggest 
that the PM protects insects from xenobiotics such as 
dichloro‑diphenyl‑trichloroethane (DDT[61]). In addition 
to the PM, a mucin layer covers the midgut enterocytes 
in Drosophila, but its role in the host defense has yet to 
be investigated.[17]

Physical barriers also play a critical role in preventing 
the deleterious effect of chronic activation of the immune 
response by the commensal microbes.[62] Indeed, mutants for 
the big bang gene, which encodes multiple membrane‑as‑
sociated postsynaptic density protein 95 (PSD‑95), discs 
large, zonula occludens‑1 (ZO‑1) (PDZ) domain  containing 
protein isoforms, displayed loose septate junctions on the 
apical side of the enterocytes and a constitutive activation 
of the anterior midgut immune response. This phenotype 
correlates with a shortened lifespan of bbg mutants, which 
can be restored by clearing resident bacteria using antibi‑
otic treatment. These observations are reminiscent of the 
chronic inflammation characteristic of mammalian bowel 
diseases and indicate that intact intestinal cell junctions are 
required for immune tolerance towards the endogenous gut 
microbes. The role of epithelial integrity in the host defense 
is further supported by the phenotype of MyoIB mutants. 
The myosin IB protein is required to maintain the highly 

Figure 1: The Drosophila gut anatomy. The Drosophila gut includes 
three main parts: the foregut (crop), the midgut, and the hindgut. The 
midgut is divided in four sections: the proventriculus, the ventriculus, 
the copper cells, and the posterior midgut, respectively, along the 
anterio‑posterior axis of the insect body. The malpighian tubules 
which ensure the osmoregulatory and excretory functions connect to 
the gut at the junction between the midgut and the hindgut.
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ordered structure and composition of the brush border layer 
in the larval midgut epithelium. Both MyoIB and bbg mutant 
flies are hypersensitive to enteric infections by pathogenic 
bacteria.[62,63]

The active immune response of the gut

AMP production

A major aspect of Drosophila host defense is the patho‑
gen‑induced expression of AMPs through the activation of 
nuclear factor kappa‑light‑chain‑enhancer of activated B 
cells (NF‑kB) transcription factor family members. Two 
signaling cascades, Toll and immune deficiency (IMD), 
regulate the systemic immune response, characterized by 
secretion of AMPs from the fat body cells into the hemo‑
coel cavity of the insect.[64] These pathways are activated 
via the detection of microbial elicitors by cognate pattern 
recognition receptors (PRRs) of the peptidoglycan (PGN) 
recognition protein (PGRP) and the Gram‑negative bind‑
ing protein (GNBP) families.[65‑67] The Lys‑type PGNs of 
Gram‑positive bacteria and b‑glucans from fungal cell walls 
trigger the Toll pathway upon binding to a PRR complex in‑
cluding PGRP‑SA, GNBP1, and PGRP‑SD and the GNBP3 
receptor, respectively.[68‑75] The meso‑diaminopimelic acid 
(DAP)‑type PGNs of Gram‑negative bacteria and bacilli ac‑
tivate the IMD pathway through transmembrane PGRP‑LC 
and/or secreted/cytosolic PGRP‑LE receptors.[76‑85] AMP 
expression is also elicited by the sensing of danger signals 
such as secreted microbial proteases upstream of the Toll 
pathway.[68,86] This dual sensing mechanism allows a graded 
Toll pathway activation threshold, matched to the severity of 
the infection. Danger sensing also avoids the mechanisms 
deployed by some pathogens to impede the detection of 
microbial moieties by PRRs.[68]

In the gut epithelium, the expression of AMP‑encoding 
genes is typically regulated by the IMD pathway and bac‑
terial PGN represents the only identified elicitor to date 
[Figure 2].[69,77,87] Bacterial recognition is regionalized along 
the length of the gut. PGRP‑LE is the predominant intracel‑
lular receptor for monomeric PGN in the midgut. PGRP‑LC 
acts mostly in the proventriculus and the hindgut and con‑
comitantly with PGRP‑LE in the ventriculus as a detector 
of extracellular monomeric and polymeric PGN.[15,85] The 
dominant members of the Drosophila gut bacteria, Aceto‑
bacter and Lactobacilli spp., carry DAP‑type PGNs and 
activate the IMD pathway at a basal level, which allows 
homeostatic relationship between this microbiota and the 
host immune response.[15]

Any dysregulation of the IMD pathway alters this bal‑
ance. For example, upregulation of AMP gene expression in‑
duces intestinal dysbiosis, marked by the overgrowth of Glu‑
conobacter morbifer, which is normally only a minor com‑

ponent of the natural gut microbial community. The resultant 
gut pathology is associated with a reduced lifespan.[23,31] 
Several layers of control ensure a tight regulation of the 
IMD pathway in order to tolerate the commensal microbiota 
and fight pathogen infection when required [Figure  2]. The 
first layer involves negative regulators of the IMD pathway, 
some of which alter the initial steps of sensing and signal‑
ing processes by targeting either the bacterial elicitor or 
the host receptor. Catalytic members of the PGRP family 
have an amidase activity, related to the bacteriophage T7 
lysozyme, that degrades PGN into non‑immunostimulatory 
molecules.[88] Among these catalytic PGRPs, PGRP‑LB has 
a predominant role in the modulation of the IMD pathway 
in the gut.[31,89] PGRP‑LB expression is activated by the 
microbiota and further enhanced upon infection.[15,23] In the 
absence of infection, PGRP‑LB mutant flies express high 
levels of AMP, compared to wild‑type flies. This increased 
expression is suppressed under axenic conditions, dem‑
onstrating that PGRP‑LB is required to maintain the low 
basal immune response to microbiota.[31] A non‑catalytic, 
membrane‑bound signaling‑deficient PGRP, PGRP‑LF, 
also acts as a negative regulator of the IMD pathway.[90,91] 
PGRP‑LF has two PGN recognition domains and a high 
affinity for PGRP‑LC when bound to the monomeric PGN 
of Gram‑negative bacteria, tracheal cytotoxin (TCT). Thus, 
PGRP‑LF hinders the assembly of the receptor complex 
upstream of IMD.[92] At the intracellular level, the acces‑
sibility of both PGRP‑LE and PGRP‑LC receptors to the 
downstream components of the cascade is antagonized by 
Pirk (Poor IMD Response upon Knock in), also referred to 
as PIMS (PGRP‑LC–interacting inhibitor of IMD signaling) 
or Rudra.[28,93,94] Indeed, Aggarwal et al., showed that the Pirk 
inhibitor interacts with PGRP‑LC, PGRP‑LE, and IMD, 
thus disrupting the signaling complex. Like PGRP‑LB, 
Pirk is a critical component in the negative feedback loop 
that maintains a balanced IMD response following bacte‑
rial infection.[28] Interestingly, flies lacking PGRP‑LF have 
developmental defects that are attenuated when flies are 
reared on antibiotics.[90] Similarly, PGRP‑LB, Pirk double 
mutants have reduced lifespan that is improved when flies 
are maintained in axenic conditions.[31] Clearly, these nega‑
tive regulators prevent the spurious activation of the immune 
response by the fly indigenous microbes. Additional negative 
regulators of the IMD pathway have been identified, mainly 
acting via ubiquitylation and the degradation of intracellular 
components of the cascade.[17,95‑102] Altogether, these regula‑
tory components downregulate the IMD cascade following 
immune stimuli, allowing a balanced AMP response to be 
re‑established once the infection is cleared.[103,104]

Another layer of control is provided by the func‑
tional compartmentalization of the Drosophila gut.[15,23,105] 
Although the IMD pathway responds to the endogenous 
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microbes all along the gut, the expression of NF‑kB–depen‑
dent AMPs and immunosuppressor genes follows different 
patterns. In the midgut, PGRP‑LB and Pirk are constitu‑
tively expressed, whereas many AMP‑encoding genes are 
repressed by the homeobox gene caudal [Figure 2].[15,23] 
Strikingly, the production of negative regulators, induced 
by the commensal bacterium Lactobacillus plantarum, 
is shifted toward PGRP‑LE–mediated AMP production, 
in response to infection by Erwina carotovora. In 2012, 
Bosco‑Drayon et al., proposed that AMP production might 
require stimulation by a higher bacterial load compared to 
negative regulator expression. This hypothesis is supported 
by the observation that IMD pathway activation increases 
with elevated microbiota density during aging. However, it 
is also tempting to speculate that a dual mechanism inte‑
grating the detection of PAMPs and danger signals would 
apply to the regulation of mucosal gut immunity, allowing 
the tolerance of autochthonous bacteria and directing the 
antimicrobial response toward allochthonous bacteria. 
Although such a mechanism has not been described for 
the IMD pathway to date, a transcriptomic analysis of the 

immune response in the gut of infected flies has revealed 
the induction of antimicrobial encoding genes, the droso‑
mycin‑like peptides, independently of the IMD pathway. 
These AMPs, proposed to be antifungal, are induced under 
stress conditions and intestinal damage through the activa‑
tion of the Janus kinase‑signal transducer and activator of 
transcription (JAK‑STAT) pathway.[29,34]

Reactive oxygen species production

In addition to the orderly AMP production, a bal‑
anced redox system is essential for the host defense and 
maintenance of gut homeostasis in Drosophila.[106‑109] Oral 
infection of adult flies is associated with the rapid produc‑
tion of reactive oxygen species (ROS)[106,107] generated 
by dual oxidase (DUOX), a member of the nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase fam‑
ily [Figure 3].[106] This ROS production is required to 
control dietary yeast, which would otherwise proliferate 
in the gut and kill the fly.[109] Furthermore, RNA interfer‑
ence (RNAi)‑mediated knock‑down of duox in the intestinal 
epithelium leads to enhanced susceptibility of the flies to 

Figure 2: Regulation of the IMD pathway in the Drosophila midgut. The Drosophila gut is regionalized according to the major roles of PGRP 
receptors inducing the IMD pathway and to the nature of the concomitant induced responses. Monomeric and polymeric PGNs trigger the 
polymerization of PGRP‑LC receptor isoforms which have a predominant role in the proventriculus. PGRP‑LE exclusively controls the IMD 
pathway activity in the copper cells and the posterior midgut, where it acts as an intracellular receptor of TCT. Both receptors are required in 
the ventriculus. Following PGN binding, oligomerized receptors initiate an intracellular cascade involving the IMD adaptor protein, which leads 
to the nuclear translocation of a NF‑kB transcription factor, Relish. Relish controls the expression of multiple genes including those encoding 
AMPs or negative regulators of the IMD pathway. Relish activity is inhibited by the homeobox gene caudal in the posterior section of the midgut. 
Signaling through the IMD pathway is modulated by the amidase activity of PGRP‑LB which degrades PGN into non‑stimulatory entities. The 
signaling complex of the IMD pathway is monitored by PGRP‑LF which hinders the multimerization of the TCT–PGRP‑LC complex and Pirk 
which limits the accessibility of the PGRP‑LE and PGRP‑LC receptors to the downstream components of the cascade. Filled arrows indicate 
the predominant response. Abbreviations used: AMPs: Antimicrobial peptides; NF‑kB: Nuclear factor kappa‑light‑chain‑enhancer of activated 
B cells; PGN: Peptidoglycan; PGRP: Peptidoglycan recognition protein; Pirk: Poor Imd Response upon Knock in; TCT: Tracheal cytotoxin.
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minor oral infections, demonstrating that DUOX is part of 
an essential defense system of the gut mucosa.[106] However, 
the oxidative burst is deleterious to the host cells and excess 
ROS are eliminated by the immune‑regulated catalase (IRC), 
which is constitutively expressed in the gut.[107,109,110] Both 
expression and activity of DUOX are enhanced upon infec‑
tion [Figure 3]. The DUOX enzyme is calcium‑dependent 
and is regulated by the Gaq‑phospholipase Cb that mo‑
bilizes Ca2+ from the endoplasmic reticulum (RE) upon 
generation of inositol triphosphate.[106,109] DUOX expression 
is regulated through the activation of the mitogen‑activated 
protein (MAP) kinase pathway, integrating inputs from the 
PGRP‑LC receptor but also from the sensing of microbial 
activities through a so far unidentified receptor acting up‑
stream of PLC‑b [Figure 3].[30,108] The current model pro‑
poses that uracil produced by allochthonous bacteria is the 
determining agonist activating PLC‑b, since uracil ingestion 
leads to ROS generation in a dose‑dependent manner. This 
model is supported by the fact that oral infection with an 
uracil auxotrophic strain of E. carotovora shows increased 
virulence, while the auxotroph fails to trigger ROS produc‑
tion in the gut.[30] However, the relevance of this observation 

remains uncertain, since the ability of the major components 
of the indigenous microbiota to produce uracil has not been 
demonstrated.

Conclusion

During the last 5 years, our comprehension of the 
mechanisms underlying the gut immune response has 
considerably expanded. The setting up of several infection 
models combined with genome‑wide analyses revealed 
that the innate immune response in the gut is multilayered 
and tightly controlled to prevent immune reactions against 
the endogenous gut microbes. Similarly, the mechanisms 
involved in epithelial repair after exposure to microbial 
harm (i.e., resilience mechanisms) are now quite well un‑
derstood.[50]

From PAMP recognition to bacterial pathogenicity

Several questions remain open
As both the subcellular distribution of PGRPs and 

the molecular nature of the uracil receptor are unknown, 
how the microbial PAMPs are sensed in the Drosophila 

Figure 3: Regulation of ROS production in the Drosophila midgut. ROS are produced in the Drosophila gut lumen though the activity 
of DUOX. DUOX activity is triggered to a basal level by the gut microbiota and the ingested microorganisms, and is further enhanced 
upon infection. Uracil released by microorganisms is likely to trigger a G‑protein‑coupled receptor that activates the Gaq‑phospholipase 
Cb, which in turn mobilizes intracellular Ca2 + through IP3 generation for DUOX‑dependent ROS production. DUOX activity is also 
regulated at the transcriptional level through the activation of the p38‑MAPK pathway leading to the activation of the transcription factor 
Atf2. Transcription of the duox gene also integrates inputs from the Imd pathway. Under basal conditions, duox transcription is negatively 
controlled by the calcium‑dependent phosphatase calcineurin B through the induction of mitogen kinase phosphatase 3. Blue and purple 
arrows indicate the enhancer and inhibitory pathways of DUOX activation, respectively. Abbreviations used: Duox: Dual oxidase; IP3: 
Inositol triphosphate; MAPK: Mitogen activated protein kinase; MEKK1: MAPKinase  and ERK kinase kinase 1; MKK3: Mitogen activated 
protein kinase 3; ROS: Reactive oxygen species.
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gut remains unclear. In mice, the bacterial flagellin sensor 
Toll‑like receptor 5 (TLR5) is located at the basal surface 
of enterocytes, but this sensor cannot detect flagellin from 
the gut luminal flora. Invasive bacteria, however, reach the 
basal enterocyte surface, where TLR5 is then able to trigger 
an inflammatory response.[111] Septate junction deficient flies 
have an enhanced paracellular space that facilitates access of 
the endogenous flora to the latero‑basal side of enterocytes. 
Similar to TLR5 distribution in mouse enterocytes, a basal 
cellular distribution of PGRP‑LC may explain the potent 
innate immune response observed in these mutant flies.[62]

How the damage inflicted to the gut by pore‑forming 
toxins, such as the Cry‑toxins from Bacillus thuringiensis or 
monalysin from Pseudomonas entomophila, causes lethality 
in Drosophila is unclear. In mammals, any breach of the gut 
mucosal barrier results in basal exposure of TLR5 to flagellin 
from the endogenous flora, leading to TLR5 activation and 
subsequent chronic gut inflammation.[112] A similar mecha‑
nism in the fly would predict that if pore‑forming toxins lead 
to internal exposure to the gut flora, then this exposure would 
result in enhanced IMD pathway activation and subsequent 
lethality.[113] Gut damage and food uptake blockage may also 
contribute to pore‑forming toxin pathogenicity.[35]

A chicken and egg conundrum, the aging gut 
phenotype

The increased titer of the microbial community associ‑
ated with enhanced IMD pathway activation during aging 
of the fly remains mysterious.[24] Possibly, this paradoxical 
correlation could reflect a long‑term selection of the bacte‑
ria for resistance, leading to a gradual increase in the basal 
response. Alternatively, increased IMD pathway activation 
could be linked to an age‑related deterioration in gut repair 
mechanisms, leading to increased exposure to bacterial 
PAMPs and selection of resistant bacterial strains.

Despite the differences between the mammalian intes‑
tine and the fly gut, many parallels between the two establish 
Drosophila as a powerful and fascinating model to decipher 
fundamental aspects of gut biology. Such knowledge will have 
implications for understanding the dynamic host/microbiota 
interactions in the healthy human gut and for the complex 
mechanisms of intestinal disease syndromes such as Crohn’s.[62]
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