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The benefits of antigen‑based immunotherapy

Studies on the immunopathogenesis of experimental 
autoimmune encephalomyelitis (EAE) have provided 

a series of immunomodulatory approaches that have trans‑
lated to the treatment of the inflammatory component of 
multiple sclerosis (MS).[1] More generally, there has been a 
significant expansion in the immunomodulatory options for 
the treatment of human autoimmune disease. These include 
biologics as well as small molecule inhibitors.[2‑4] However, 
an inescapable concern over the use of such therapeutic 
options is that they will impact adversely upon benefi‑
cial immunity as well as the unwanted function of those 
relatively rare populations of lymphocytes that are driving 
pathology. This is well exemplified by the risks associated 
with the use of natalizumab/Tysabri in MS. This monoclonal 
antibody, which targets a4 integrin to inhibit T cell entry 
into the CNS, can be remarkably effective in relapsing 

remitting MS (RRMS). However, the concomitant inter‑
ruption of normal immunosurveillance of the tissues can, 
in some patients, lead to viral reactivation and development 
of progressive multifocal leukoencephalopathy.[5] Whilst 
clinical stratification can mitigate this risk,[6] it highlights 
the challenge posed by the use of potent drugs that affect 
the immune system globally. Other current MS drugs come 
with the same challenge.

Lymphocytes are defined by their expression of anti‑
gen‑responsive receptors. An approach that can specifically 
target pathogenic lymphocytes by stimulating them through 
their antigen receptors, i.e., antigen‑based immunotherapy, 
should avoid compromising beneficial immune function. 
The induction of T‑cell tolerance using antigen‑based 
strategies is, therefore, often referred to as the holy grail 
for immunotherapy of autoimmune and allergic diseases.[7] 
Indeed, “specific immunotherapy” based on the adminis‑
tration of allergen extracts, or individual allergen proteins, 

We now have potent drugs available to treat the inflammatory 
component of multiple sclerosis (MS). However, not all patients respond, 
the drugs are not curative, and the associated risks to beneficial immune 
surveillance are considerable. A more desirable approach is to specifically 
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is a long‑established option for the desensitization of al‑
lergic patients.[8,9] Despite robust preclinical data obtained 
in rodent models, clinical trials aimed at establishing oral 
tolerance to autoantigens in rheumatoid arthritis and MS 
were unsuccessful.[10] However, interest in antigen‑induced 
tolerance remains strong, particularly around the use of 
synthetic peptides containing defined epitopes recognized 
by autoreactive T cells.[11] This review will consider the 
options for peptide immunotherapy (PIT), what we have 
learned from studies in EAE, and the challenges that remain 
for successful clinical translation.

EAE as a testing ground for PIT

Whilst EAE is not MS, it serves as the best model for 
the inflammatory component of MS and is the prototypic 
CD4+ T‑cell–mediated autoimmune disease.[1,12] A series of 
T‑cell epitopes are well‑defined for a range of CNS myelin 
autoantigens:[13] most notably, myelin basic protein (MBP), 
proteolipid protein (PLP), and myelin oligodendrocyte gly‑
coprotein (MOG), but there are others. Therefore, EAE is 
an ideal model system in which the efficacy of PIT can be 
tested and its mechanistic basis can be probed. PIT has been 
shown to be highly effective in preventing the development 
of EAE in many studies.[14‑16] Fewer studies have tested the 
ability of PIT to reverse ongoing EAE, which is of course 
more analogous to the clinical imperative. However, new 
mechanistic studies are now starting to examine how PIT 
can influence effector and memory T cells in EAE and other 
T‑cell–driven immunopathologies.

The paradigm that immunization with a myelin 
peptide in complete Freund’s adjuvant (CFA) leads to 
EAE, whereas initial administration of the same peptide 
without adjuvant, in soluble form in saline, prevents EAE 
following subsequent immunization has been established 
for over 20 years.[17] Early studies assessed changes to 
myelin‑reactive T‑cell function at the primed lymph node 
level, i.e., were autoantigen‑induced proliferation and cy‑
tokine production altered in recall assays? The availability 
of mouse lines bearing transgenic T‑cell receptors (TCRs) 
that recognize individual myelin peptides has increased the 
level of sophistication that can be achieved in understand‑
ing the mode of action of PIT.[1,18‑22] Although some myelin 
peptide–major histocompatibility complex (MHC) tetramers 
are available to analyze endogenously generated responses 
amongst polyclonal TCR repertoires,[23‑25] these have not 
been adopted broadly for these types of studies.

Mechanisms of PIT

Studies in non‑transgenic systems suggested that a 
4‑day window is required after PIT for T cell unrespon‑
siveness to develop.[14] What happens in this 4‑day period? 
Naïve T cells receive an antigenic signal through their TCR 

when exposed to PIT, but do not receive the necessary 
co‑stimulation that is provided by the antigen presenting 
cell (APC) exposed to inflammatory signals such as those 
provided with CFA.[26] This is exemplified by the fact that 
if the soluble adjuvant lipopolysaccharide (LPS) is included 
in the PIT inoculum, tolerance is prevented.[26,27] Broadly, 
peripheral T‑cell tolerance can be categorized as having 
three mechanisms: (1) apoptotic T‑cell death; (2) T‑cell 
survival, but in an unresponsive state (often called anergy); 
and (3) differentiation toward suppressive/regulatory T‑cell 
function. For the latter mechanism, regulatory function 
might be instilled through expression of Foxp3, the master 
regulator of T regulatory (Treg) cell differentiation and func‑
tion,[28] or through non‑Foxp3–dependent mechanisms such 
as strong IL‑10 production.[11] Of note, IL‑10 production 
can also be a key component of Foxp3+ Treg cell activity, 
although there is a range of suppressive functions that these 
essential cells have at their disposal.[29] Which of these three 
pillars of immune tolerance dominates following exposure 
to PIT remains a matter of debate and might well vary for 
different experimental protocols and for T cells in different 
states of activation and differentiation.[30]

Some effects of PIT are clear, however. Firstly, toler‑
ance induction is not a null event; it is an active process 
that is dependent on TCR signaling following ligation of 
the peptide–MHC complex. In fact, it is difficult to discern 
any early differences in the behavior of T cells exposed 
to PIT versus PIT + LPS.[26] The T cells clearly are acti‑
vated. Carboxyfluorescein succinimidyl ester‑loaded TCR 
transgenic T‑cell transfer experiments show minimal dif‑
ferences in the rates of proliferation between PIT‑exposed 
and PIT + LPS‑exposed T cells. However, by the key 4‑day 
time‑point, whilst PIT + LPS‑exposed T cells continue to 
accumulate, those exposed to PIT alone become increas‑
ingly scarce.[26] This suggests that activation of naïve T cells 
commences in response to PIT, but this is abortive, leading 
to their apoptosis. Lymph node imaging studies using oral 
administration of whole antigen in tolerogenic form (alone) 
versus immunogenic form (together with cholera toxin as 
adjuvant) suggested that the T cell–APC clusters that formed 
during tolerance were shorter‑lived than those formed dur‑
ing immunization.[31] Whilst this would be consistent with 
less‑stable T‑cell expansion in response to tolerogenic stimu‑
lation, differences between oral tolerance and PIT need to be 
considered when extrapolating between the two approaches.

The molecular basis for abortive T‑cell activation in 
response to PIT is understood to some extent. Co‑admin‑
istration of agonistic antibodies binding the co‑stimulatory 
molecules CD40 or OX 40 at the time of PIT can prevent the 
induction of tolerance (substituting for the use of LPS).[32,33] 
This correlates with sustained T‑cell numbers by driving the 
expression of anti‑apoptotic molecules Bcl‑2 and survivin 
in the responding T cells. These are dependent on OX 40 
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signaling,[34,35] which is mediated either directly by the 
anti‑OX40 or indirectly by elevated OX40 ligand expres‑
sion on the peptide–MHC–presenting APC, triggered by 
CD40 signaling driven by the anti‑CD40. CD40 ligation 
also boosts the expression of CD80 and CD86 by APC,[36] as 
does LPS exposure.[26] This suggests that inadequate CD28 
signaling to the T cells is also a component of PIT‑induced 
tolerance. However, it is unlikely that CD28 signaling is 
totally absent, given the steady‑state expression of CD80 and 
CD86 by APC, particularly by dendritic cells (DC). Also, 
we have observed that administration of peptide‑loaded 
CD40‑/‑ DC can induce an abortive T‑cell response that 
looks very similar to that seen following PIT. Importantly, 
these “tolerogenic” CD40‑/‑ DC had been activated with 
LPS and consequently had elevated CD80 and CD86 ex‑
pression,[37] further calling into question the necessity for 
inadequate CD28 signaling to impose T‑cell tolerance. Of 
note, some current clinical trials of “tolerogenic” DC also 
incorporate LPS exposure as a means of enhancing their 
capacity for antigen presentation.[38] It is also worth noting 
here that whilst co‑administration of PIT with either LPS, 
anti‑CD40, or anti‑OX40 can subvert the cellular processes 
that normally lead to tolerance, these “adjuvants” cannot by 
themselves drive T‑cell activation sufficiently to the point 
that EAE ensues. Subsequent immunization with peptide in 
CFA is still required for this.[32]

The above studies argue for apoptotic death as a 
major component to naïve T‑cell tolerance following PIT. 
However, this cannot be the entire story. Anti‑CD40 and 
anti‑OX40 have also been reported to overcome established 
tolerance.[33] If so, a small but sufficient population of 
antigen‑responsive T cells must survive to be reactivated. 
Nevertheless, these cells are unresponsive to immunization 
with peptide + CFA. Are these cells anergic? Clonal anergy 
was initially described as an unresponsive state induced in 
cultured T‑cell lines stimulated through their TCRs in the 
absence of (CD28) co‑stimulation.[39] These cells were then 
unable to produce IL‑2 upon full restimulation, but could up‑
regulate the high‑affinity IL‑2 receptor, CD25. IL‑2 receptor 
signaling is a key component of T‑cell immunity, promoting 
T‑cell proliferation and survival. Anergic T cells, lacking 
autocrine IL‑2 production, therefore show impaired clonal 
expansion upon TCR stimulation, which can be restored with 
exogenous IL‑2. Notably, such classically anergic T cells 
do retain the capacity to produce effector cytokines such as 
interferon (IFN)‑g and IL-4.[39] Early studies suggested that 
lymph node cells retrieved after immunization of mice that 
previously received PIT had a global impairment in their 
ability produce IL‑2 and effector cytokines upon rechallenge 
with myelin peptides.[14,15,17] This suggests an unresponsive‑
ness that is subtly different to classical anergy, but there are 
caveats. Firstly, the numbers of myelin‑responsive T cells 
in those primed lymph node populations were uncertain. 

Second, an important time‑point to assess the responsiveness 
of PIT‑treated T cells would be when they are challenged 
in vivo by immunization. This is most easily addressed us‑
ing TCR transgenic T cells to elevate their frequency. Such 
studies showed that T cells retrieved from the spleens of 
mice 7 days after a single dose of PIT failed to produce IL‑2 
or IFN‑g upon in vitro re‑challenge with peptide.[40] This 
time‑point would routinely be the day of immunization for 
EAE induction, and these data, therefore, indicated that the 
unresponsive state is established by this time (i.e., second 
exposure to antigen is not required to drive the unresponsive 
features seen in the earlier primed lymph node studies).

PIT‑induced regulatory function

From the above studies, it seems that naïve T cells 
enter an abortive phase of clonal expansion in response 
to PIT. Many cells are then deleted through apoptosis and 
those T cells that do survive are unresponsive, lacking 
the ability to produce IL‑2 or effector cytokines. These 
cells cannot, therefore, undergo clonal expansion upon 
immunization with myelin peptide, and therefore, EAE 
cannot develop. Two pillars of immune tolerance (death 
and unresponsiveness) are, therefore, certainly involved in 
PIT‑induced protection from EAE. Is there scope for the 
third pillar, regulation? It is notable that very few PIT stud‑
ies have reported robust gains of Foxp3 expression among 
peptide‑responsive T cells. However, it seems that regula‑
tion can be induced. In strains of mice in which EAE can 
be induced using several individual T‑cell epitopes, we used 
PIT to tolerize against a single PLP peptide. This could limit 
disease initiated not only by subsequent immunization with 
that same PLP peptide, but also if the mice were immunized 
with either of two distinct MBP peptides (without inclu‑
sion of the PLP peptide in the immunizing inoculum).[15] 
This was evidence for “bystander suppression” and sug‑
gested that PIT had induced a regulatory function among 
PLP‑responsive T cells which could then function within the 
CNS to dampen disease driven by MBP‑responsive T cells 
(presumably because of presentation of the PLP peptide as 
a result of myelin damage). However, no solid proof that 
PLP‑responsive T cells had gained a defined suppressive 
function was provided by that study. A series of subsequent 
studies from the Wraith group provided evidence for such 
mechanism through the induction of IL‑10 production.[16,41‑43] 
Using a TCR transgenic line recognizing MBP, those studies 
showed that this function emerges in response to repeated 
PIT administration. Notably, at the population level, T cells 
isolated from mice that have received one to three doses of 
PIT are able to produce proinflammatory cytokines; but as 
the number of dose increases, this ability is lost and IL‑10 
production is favored. The earlier study using PLP peptide 
used three doses of PIT into non‑transgenic mice. The 
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model of death/unresponsiveness described above arises 
from studies which used single doses of PIT which, whilst 
being sufficient to deliver profound tolerance, might not be 
sufficient to induce regulatory function. The IL‑10 produc‑
tion seen in the Wraith studies did not correlate with gain 
of Foxp3 expression.[44] Other studies involved prolonged 
exposure to peptides using implanted osmotic mini‑pumps 
and in this scenario, Foxp3 expression in the corresponding 
T‑cell populations was seen.[45] Together, these studies sug‑
gest that sustained/repeated exposure to tolerogenic peptide 
may be a key requirement for instilling regulatory function, 
which, variably, can reflect Foxp3+ Treg generation or IL‑10 
production. The variables that determine the form of regula‑
tory function are unclear. Also, it should be noted here that 
the above studies used naïve T cells as a starting point for 
induction of regulatory function.

The reason a protocol that can drive regulatory func‑
tion is so appealing and straightforward; not only would 
such T cells not be dangerous in themselves after PIT, they 
would also suppress the deleterious effects of other T cells 
and, if their persistence could be ensured, they would pro‑
vide long‑lasting “cover” against any proinflammatory T 
cells that might arise in the future. Bystander suppression 
is particularly appealing given that, although several auto‑
antigenic epitopes are characterized in MS,[46‑50] we do not 
know which (if any) of these are the key targets recognized 
by T cells driving disease. Therefore, a suppressive T‑cell 
population recognizing a defined myelin epitope could sup‑
press a proinflammatory population recognizing other (per‑
haps unknown) myelin epitopes, if their localization was 
sufficiently close. This could be a necessary feature, based 
on studies using chronic and relapsing EAE models that 
have described the spreading of T‑cell reactivity to additional 
epitopes over time.[51,52] However, the true extent and impor‑
tance of epitope spreading remains controversial,[53,54] and a 
recent study indicated that, even once relapsing disease was 
established, targeting the T cells recognizing the inducing 
epitope was sufficient to limit those relapses.[55]

In theory, an induced suppressive T‑cell population need 
not necessarily recognize a defined myelin autoantigen. If 
the suppressive cells can recognize an autoantigen that is 
upregulated during inflammation, then these cells might 
have disease‑resolving qualities, regardless of the antigen 
reactivity of the inciting pathogenic T cells. Heat shock 
proteins (HSPs) are candidate antigens to serve as molecular 
“flags” for attracting suppressive T cells to inflamed tis‑
sues.[56] Nasal application of peptides from HSP60 or HSP70 
was able to promote Foxp3+ T cells with suppressive func‑
tion in arthritis models in rat[57] and mouse,[58] respectively. 
Similarly, nasal application of a peptide from rat HSP60 was 
able to modulate MBP‑driven EAE in rats.[59] The reduction 
in disease with the HSP60 peptide (using a post‑immuni‑

zation protocol) was equivalent to that seen when the MBP 
peptide itself was used as the tolerizing antigen.

What type of regulators should we induce?

Foxp3+ Treg cells seem very adept at suppressing 
EAE, if given prophylactically.[60] A key point, however, 
is that these cells are most effective if they recognize my‑
elin autoantigens (polyclonal Treg cells are ineffectual 
in comparison).[61] Therefore, there is clearly scope for 
antigen‑driven expansion of Foxp3 + cells. The clinical im‑
perative is to reverse ongoing pathology. The scenario above 
in which regulatory cells need to come into close contact 
with pre‑activated pathogenic cells might best be achieved if 
the regulatory cells can access and function in the inflamed 
CNS itself. An impressive accumulation of Foxp3+ Treg 
cells within the CNS occurs naturally during EAE and we 
have described that this is essential for spontaneous reso‑
lution of the disease.[62] Clearly Treg cells have an ability 
to infiltrate the inflamed CNS and then rapidly proliferate 
therein.[63] These cells also have strong suppressive activity.
[62,63] We first identified these cells by screening for IL‑10 
producing cells within the CNS[62] (although it should be 
noted that we have since shown that CD4+Foxp3‑ cells  from 
the CNS can also produce IL‑10 following TCR stimula‑
tion).[64] Therapeutic studies have shown that Foxp3+ Treg 
can also limit relapses in EAE and that MBP‑responsive Treg 
can limit PLP‑driven disease, analogous to the bystander 
suppression phenomenon seen with PIT.[61] However, those 
Treg studies did not identify precisely where the Treg cells 
were functioning. More work is required to fully understand 
how best to encourage therapeutically administered Treg to 
target the CNS. However, as discussed above, the greater 
challenge is to develop a robust PIT protocol either to expand 
existing myelin‑responsive Treg or to induce de novo Foxp3 
expression. It is notable that there is no body of evidence to 
suggest that pre‑existing T effector (Teff) cells can be driven 
to become Foxp3+ Treg.

A better means of using PIT to generate a dominant 
suppressive function in Teff cells might be to push them 
toward IL‑10 production, with concomitant loss of proin‑
flammatory cytokine production.[11] This has been achieved 
by repeated exposure of naïve T cells to PIT[16,41] and there 
is some evidence to suggest that it might also be achieved 
in mice that are already immune.[65] Moreover, clinical 
data from studies using allergen peptides suggest that this 
might also be achieved in humans.[66] Based on this, IL‑10 
production has become a key putative “biomarker” to sug‑
gest successful induction of immune tolerance/regulation 
in human studies. However, as with Foxp3 induction, more 
work is needed to identify a robust and consistent means of 
achieving this in response to PIT.
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Anaphylaxis as a confounding issue?

The majority of PIT studies in EAE have focused on 
the tolerogenic administration of peptide before induction 
of disease (i.e., targeting T cells while they are in their 
naïve state). Of course, this is not the clinical imperative; 
ongoing disease is driven by effector and memory T cells. 
True therapeutic use of PIT in EAE has been hampered due 
to anaphylactic reactions to soluble peptide in mice that 
have previously been immunized with the same peptide in 
CFA, which can trigger production of anti‑peptide IgE and 
IgG1.[67,68] Although the etiopathology of MS is unknown, 
we can be certain that it is not due to immunization with 
myelin peptide in CFA. However, hypersensitivity reac‑
tions associated with anti‑peptide IgG1 and IgE following 
repeated peptide administration led to the cessation of an MS 
clinical trial.[69] Interestingly, PIT can reverse EAE induced 
by immunization with intact myelin antigen in CFA, which 
does not trigger the generation of anti‑peptide antibodies 
(unpublished). Moreover, to seek further proof of principle 
that PIT could work therapeutically in EAE, we designed 
an altered peptide ligand (APL) that retained function as 
a TCR ligand but did not bind antibodies. A single amino 
acid substitution in the MOG(35–55) peptide was sufficient 
to produce such an APL.[70] As expected, using this peptide 
avoided anaphylaxis. Importantly, the APL was capable 
of reversing EAE induced with the wild‑type peptide. In 
a complementary approach, others have taken a protozoan 
peptide which has sequence similarity to PLP (139–151) and 
can stimulate PLP‑responsive T cells, but does not bind to 
anti‑PLP (139–151) antibodies. Repeated treatment with this 
mimic peptide, post‑PLP (139–151) immunization, could 
prevent EAE.[55] An additional feature of this study was that 
the mimic peptide was produced as a non‑linear octamer, 
rather than in monomeric form.

EAE can also be induced by passive transfer of my‑
elin‑responsive T cells into non‑immunized host mice.[13] In 
this case, the hosts do not harbor any anti‑peptide antibodies, 
allowing assessment of the effects of PIT upon pre‑formed 
encephalitogenic Teff cells (discussed below). Despite these 
data indicating that PIT is able to induce unresponsive‑
ness, even among encephalitogenic effector and memory 
T cells, the potential development of anti‑peptide antibodies 
through prolonged application of PIT (as exemplified in an 
MS trial)[69] remains a key consideration facing effective 
clinical translation.

Transcriptional and epigenetic changes in 
PIT‑responsive T cells

PIT therefore seems capable of potently modulating the 
encephalitogenic function of both naïve and pre‑activated 
myelin‑responsive T cells. As described above, this can 

be variously attributed to apoptotic cell death, functional 
unresponsiveness or gain of dominant IL‑10–producing 
capacity. In the latter two scenarios, the PIT‑responsive 
T cells clearly survive, providing opportunities to probe 
genetic and epigenetic changes that might control the 
alteration in their function. Indeed, if antigen‑responsive 
T cells survive following PIT in patients, the stability of 
tolerance is of paramount importance and it will be crucial 
to understand these molecular changes and whether they 
are reversible. The nature of unresponsiveness might be 
relevant to this question. Classical clonal anergy does not 
need continued exposure to antigen to be maintained, but 
can be overcome if exogenous IL‑2 is provided, perhaps by 
T cells in the proximity responding to foreign antigen during 
infection.[39] Another form of unresponsiveness, which has 
been termed adaptive tolerance and might be more analogous 
to that induced by PIT, does require sustained exposure to 
antigen to be maintained.[39] It is not clear whether exposure 
to “physiological” levels of endogenous autoantigen would 
be sufficient to maintain this unresponsiveness.

The 4‑day window required for tolerance to be induced 
following PIT provides ample opportunity for changes in 
gene expression to have a role. Use of TCR transgenic mod‑
els is now allowing this possibility to be studied. The Tg4 
mouse expresses a transgenic TCR recognizing the Ac1‑9 
peptide of MBP.[18] As discussed above, repeated administra‑
tion of PIT is required to induce unresponsiveness in intact 
Tg4 mice and this is associated with transient production 
of proinflammatory cytokines in response to initial doses 
of PIT, which then wanes, to be replaced by IL‑10 produc‑
tion.[41] A recent study using subcutaneous delivery of PIT 
has shown that the initial proinflammatory response can 
reach clinical relevance via this route, with signs of “cyto‑
kine storm.” To circumvent this, a dose‑escalation regimen 
was developed. Time‑course sampling and Affymetrix 
GeneChip analysis not only confirmed the gain in IL‑10 
expression, but also demonstrated dynamic changes in the 
expression of a range of cell surface molecules, transcrip‑
tion factors and genes involved in cell cycle activity.[71] The 
transcription factors Maf and Nfil3 were strongly elevated 
by dose‑escalation PIT and these are positively associated 
with IL‑10 production.[72‑74] IL‑21 production was also el‑
evated in PIT‑exposed T cells, which is again consistent with 
induction of IL‑10.[72] Two surface molecules (lymphocyte 
activation gene 3 [LAG‑3] and CD49b) reported to identify 
IL‑10–producing Tr1 cells were also elevated by PIT.[75] 
LAG‑3 is also associated with T‑cell exhaustion,[76,77] as are 
programmed cell death 1 (PD‑1) and T cell immunoglobulin 
and mucin domain‑3 (TIM‑3), which were also elevated by 
PIT. A key advance would be to identify a surrogate surface 
phenotype that identifies tolerant T cells (IL‑10 producing 
or otherwise). Of note in this context, no combination of the 
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above surface markers could specifically discern IL‑10–pro‑
ducing T cells.[71] Another important question is how is the 
inability to produce proinflammatory cytokines driven by 
PIT in this scenario. Is this dependent on IL‑10, or, as seems 
likely, do other gene changes determine this?

Whilst the gene changes described above are interest‑
ing, the experimental setting started with naïve T cells. We 
have also investigated how PIT affects Tg4 T cells, but we 
used an established passive transfer model in our studies 
that allows us to focus our attention on a defined cohort 
of pre‑formed pathogenic Teff cells.[13,78] In this scenario, 
a single intravenous administration of PIT is sufficient to 
completely silence the pathogenic function of the trans‑
ferred Teff cells.[79] Transcriptomic (RNA‑Seq) analyses 
of the retrieved tolerized Tg4 Teff cells not only showed 
gene changes with some similarities, but also marked dif‑
ferences to those described in naïve Tg4 T cells above (un‑
published). A particularly noteworthy difference is that this 
profoundly unresponsive state induced by PIT is not associ‑
ated with gain in IL‑10 production by Teff cells. However, 
proinflammatory cytokine production is greatly diminished 
as is the ability of the tolerized Teff to accumulate within 
the CNS. This is an important point; PIT is not always de‑
pendent on IL‑10 production. The gene changes that we see 
in response to PIT are the subject of ongoing mechanistic 
investigations. However, in advance of our transcriptomic 
analyses, we did identify that exposure to PIT markedly 
elevated the expression of PD‑1 by Teff cells.[79] PD‑1 is 
an important negative regulator of TCR signaling within 
T cells,[80‑82] but it is not a definitive marker for tolerant T 
cells, because it is transiently expressed by fully functional 
T cells following TCR stimulation.[83] However, we found 
that PIT induced apparently irreversible surface expres‑
sion of PD‑1. Furthermore, PD‑1–deficient Tg4 Teff cells 
could not be silenced by PIT, and thus went on to cause 
EAE in host mice.[79] Sustained PD‑1 expression therefore 
seems an essential feature of lack of pathogenic activity 
in PIT‑exposed Teff cells and we identified epigenetic 
changes (cytosine demethylation) associated with stable 
gene expression within the PD‑1 (Pdcd1) promoter that 
occurred only in Teff cells exposed to PIT.[79] This is of 
particular interest because similar epigenetic modifications 
have been noted in the Pdcd1 promoter of virus‑specific 
CD8+ T cells that have become functionally exhausted in 
response to chronic infection.[84]

Concluding remarks

PIT is a very potent means of preventing the develop‑
ment of EAE, and recent studies by us and others indicate 
that pathogenic activity of myelin‑responsive Teff and 
memory T cells can be profoundly silenced. This has crucial 
translational consequences. Clinical trials of PIT in MS 

are underway. A key outstanding issue is how PIT influ‑
ences the function of Teff cells and T memory cells, since 
the overwhelming majority of studies aimed at providing 
mode‑of‑action data have probed this question using naïve 
T cells as the starting population. It seems very likely that 
naïve T cells, Teff cells and T memory cells will respond 
in different ways to the same PIT protocol. Indeed, we 
have already reported that this is the case using a model 
of Th2‑driven allergic airways inflammation.[85] Under‑
standing these differences will provide a key advance for 
clinical translation. There are many questions that still 
need answers.

Can we reliably induce regulatory function in Teff 
cells exposed to PIT, and if so is this function stable? 
Can we drive Foxp3 expression in Teff cells? Do the 
functional (and genetic/epigenetic) changes induced in 
Teff cells differ with the PIT protocol deployed (peptide 
dose, route of administration, timing, etc.)? Importantly, 
T cells recognizing autoantigens relevant to MS (or indeed 
to other autoimmune diseases) will be rare in peripheral 
blood samples. Can we identify these cells? Flow cytomet‑
ric approaches using peptide–MHC tetramers,[86,87] or cell 
surface changes in response to brief in vitro stimulation 
with antigen[88] suggest that this will become increasingly 
possible. Can we purify sufficient numbers of autoanti‑
gen‑responsive cells to allow transcriptional/epigenetic 
analyses? Again, improved sensitivity assays are likely 
to make this possible. An alternative “biomarker” for 
tolerance might be developed if we can define a discrete 
cell surface phenotype (likely involving the expression 
of multiple cell membrane‑associated molecules) that 
specifically travels with transcriptional/epigenetic marks 
of tolerance.

An interesting complication when considering how 
best to design tolerogenic peptides is the increasing 
realization that autoreactive T cells might not recog‑
nize the native form of the antigen. Hundreds of pos‑
sible post‑translational modifications to proteins have 
been described, some with significance to autoimmune 
T‑cell recognition.[89] How can we systematically screen 
patients’ T‑cell repertoires for responsiveness to these? 
Clearly, there is considerably more work needed to ad‑
dress these questions, but recent developments in our 
understanding of EAE, and the cellular and molecular 
tools available, mean that the model should continue to 
provide important insights of translational therapeutic 
value.
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